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Abstract. With the contemporary advances in Computational Intelligence (CI), a 

formidable gain in diversity and effectiveness becomes more obvious. However, this 

machinery that has been successfully engaged in a huge transitive work seems to 

apparently lose the natural inclination towards reflexivity and introspection and thus 

appears to miss the big picture. Although biological evolution paradigms were fruitfully 

inspirational for artificial evolution theories and a massive part of CI appears to have bio-

mimetic roots, it is no less true that biologists and computer scientists produce two parallel 

series of research and literature. The aim of this paper is to provide more insight into how 

computational paradigms drawn their inspiration from evolutionary biology. Intelligent 

adaptive systems, as artifacts designed by humans, can be largely seen as an effort of 

mimicking intelligent biological behaviors that were shaped, developed, adapted and tuned 
by natural evolution, learning mechanisms or enculturation. The latter concept is 

supported by the new field of memetics that promotes an evolutionary vision of culture, 

studying the replication, spread and evolution of memes, as cultural replicators. The main 

focus is on describing these mechanisms and the ways of applying them to designing and 

tuning intelligent adaptive systems. The approach based on memetic algorithms is finally 

benchmarked against a similar approach based on genetic algorithms, for tasks in machine 

learning such as evolving type-2 fuzzy inference systems. 

Keywords: Biological evolution, Bio-inspired metaheuristics; Hybridizations; 

Memetics; Memetic vs. Evolutionary algorithms: design differences and predictive 

performances. 
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1. INTRODUCTION 
Concepts and principles drawn from evolutionary biology were highly 

influential for the advancement of computational intelligence in general, and 

evolutionary computation in particular. The latter deals explicitly with building, 

applying and studying algorithms based upon the Darwinian principles of natural 
selection. 

However, Darwinian evolution is far from being the only theory of interest 

for computational intelligence, inspired by evolutionary biology. The modern 
evolutionary synthesis also integrates complementary approaches to natural 

selection, such as the Baldwin effect, or the Waddington’s genetic assimilation. 

The capability of the system to adapt through evolution is enriched, in this way, by 
the dimension of learning, which can be best defined in terms of phenotypic 

plasticity. In other words, learning is an aptitude carried out and (eventually) 
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refined by an individual during his lifetime span, whereas evolution is responsible 

for the changes in the genotypes that make up a population from generation to 
generation. The evolution and learning can equally be viewed as search processes; 

the genotypic evolution of the population is then associated to the global search 

and the phenotypic plasticity of individuals is associated to the local search. 

It is largely assumed that there are “synergistic” effects between evolution 
and learning. Evolution shapes and tunes the ability of an adaptive system to 

perform learning. Conversely, learning may accelerate evolution at least under 

certain conditions. 
Even Lamarckian evolution has become attractive for those approaches to 

evolutionary computing that attempt to boost the cognitive capabilities of 

individual through methods and principles derived from the Dawkins’ theory of 
cultural transmission (also known as memetics). Indeed, along with individual 

learning, cultural transmission is another important mechanism that can be 

exploited for enhancing the performance of adaptive systems. From the memetics 

viewpoint, it is argued that artificial life, unlike organic life, tolerates the 
inheritance of acquired characteristics in terms of simulation. Whether Lamarckian 

or Baldwinian evolution is more appropriate for carrying out cultural transmission 

is still under debate. 

 

2. BIOLOGICAL THEORIES OF EVOLUTION 
2.1. Lamarckian evolution: the inheritance of acquired characteristics 

The French zoologist Jean-Baptiste Lamarck was led by the study of 

fossils to the conclusion that organisms have to change their behavior to survive, 

when environments change. Those features needed for survival are developed in 
each individual through use and/or non-use (e.g., enlarge or shrink), during his 

lifetime. Then the newly characteristics acquired by individuals are somehow 

passed on to their offspring, who can continue that development. New species may 
appear, eventually, over many generations, provided than enough differences have 

been developed. For example, if a giraffe stretched its neck for leaves, its offspring 

would inherit the longer neck, and continued stretching would make it longer and 
longer over several generations.  

Lamarck's evolutionary theory was exposed in his book “Philosophie 

Zoologique” (1809). Translated in modern terms, his claim is that the phenotype 

acts on the genotype. Since there is no positive evidence of the inheritance of 
acquired characteristics, most biologists now consider that his theory is not 

substantiated: the characteristics acquired during the lifetime span of an individual 

are not directly inheritable. 
 

2.2. Darwinian evolution: natural selection 

Charles Darwin presented his theory of evolution in a famous book titled 
“On the Origin of Species” (1859). According to Darwin, natural selection is the 

process where organisms with higher reproductive success generate offspring, and 
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hence, propagate their feature through time. Only adapted features and behaviors 

are reinforced and selected. Natural selection operates at a population level, rather 
than on individuals themselves, and is grounded on three basic mechanisms: 

selection, mating and mutation. Selection relies on the capability of individuals to 

adapt and survive, when some environmental pressure challenges such capability. 

The genetic material is swapped between the individuals of a species by mating. 
This tends to homogenize the gene pool of the population. Mutations introduce 

the necessary variability in the spring, allowing for evolutionary diversification. 

Mutations can eventually lead to more fit individuals. 
Changes in environment generate a selective pressure: the environment 

selects features contributing to survival, and tends to eliminate the others. Those 

with traits which help survival tend to survive and have more offspring, who 

inherit those traits (“survival of the fittest”, or natural selection). The modern 
evolutionary synthesis is nowadays called Neo-Darwinism and encompasses 

historical Darwinism and genetics (unknown in Darwin’s days). 

 

2.3. Baldwinian evolution: phenotypic plasticity (adaptation through learning) 

The American psychologist James Mark Baldwin, in his paper “A New 

Factor in Evolution” (1896), was concerned with the effects of lifetime learning (as 
a form of phenotypic plasticity) on the genotypic evolutionary process. The 

Baldwin effect (BE) shows how the phenotype is shaped by the interaction 

between lifetime development of individuals and evolution. Two adaptive 

processes are at the origin of the BE: the genotypic evolution of the population of 
individuals with learning capabilities; the phenotypic plasticity of individuals, 

defined as the ability of an organism to adapt to its environment through learning, 

during its lifetime. This plasticity of individuals dictates which ones will be able to 
survive and produce offspring, thus determining the course of evolution. BE 

postulates that trait plasticity itself would be favored by evolution when those 

plastic responses increased individual fitness. The presence of lifetime learning can 
influence the selective pressure for genetic traits. The coupling between phenotypic 

plasticity and genotypic accommodation gives rise to adaptive evolution. 

Organisms that possess heritable learning capabilities have a better chance to 

survive certain environment effects. Therefore, learning tends to accelerate 
evolution by raising the reproductive fitness. Behaviors that are learned or 

developed over the lifetime span of an individual become instinctual through their 

gradual encoding in the genome over many generations, via mutations or 
incremental improvements. 

Unlike disproved Lamarckism, the BE does not require the direct 

inheritance of acquired characteristics. What is actually inherited is the capability 

to learn (i.e., to acquire those characteristics). This makes BE completely 
consistent with Darwinian inheritance mechanisms. 

Typical examples of BE are: ability to learn, to increase muscle strength 

with exercise, to tan with exposure to sun. 
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2.4. Waddington’s theory: genetic assimilation and phenotypic rigidity 

(canalization) 
Genetic assimilation is a related, but different evolutionary theory, 

proposed by Conrad Hal Waddington. It occurs when a behavior that was once 

acquired in the phenotype becomes specified in the genotype. According to 

Waddington, the main deficiency of Darwinism is that all the variability observed 
in nature is unlikely to be produced only by mutations that occur at random. More 

importance should be paid to the effects induced by the environment in evolution.  

Waddington (1942) defined genetic assimilation as a process “by which a 
phenotypic character, which initially is produced only in response to some 

environmental influence, becomes, through a process of selection, taken over by 

the genotype, so that it is formed even in the absence of the environmental 
influence which had at first been necessary”. In other words, since the phenotypes 

induced by the environment are adaptive, the selection on the developmental 

system tends to reduce the phenotypic plasticity (i.e., the responsiveness to the 

environment). As a consequence, after a number of generations of exposure to the 
environmental stimulus, the induced phenotype becomes inherited (genetically 

assimilated). This reduction in lifetime plasticity is known as canalization, or 

phenotypic rigidity.  
If phenotypic plasticity is not beneficial (i.e., have fitness costs), then 

genetic assimilation could be favored. Then it acts in the opposite sense compared 

to the Baldwin effect, by decreasing plasticity (i.e., increasing canalization) in a 

population subject to a given range of environmental conditions, provided that an 
increase in canalization is adaptive. 

In many situations, organisms can benefit from phenotypic rigidity. They 

may slowly evolve rigid mechanisms that replace or augment their plastic 
mechanisms. Learning by trial-and-error (e.g., learning to avoid snakes) is typically 

a risky phenotypic plasticity. There can be advantages if the learned behavior is 

genetically assimilated and hence replaced with an instinctive response to such 
dangerous environmental challenges. 

 

2.5. Comparing the Baldwin effect and genetic assimilation 

Both the Baldwin and Waddington theories are based on the assumption 
that natural selection acts upon favorable mutations, and are thus both fully 

compatible with neo-Darwinian evolution. 

In the Baldwin effect, selection may act in two ways: (1) by changing the 
mean trait values in the population, but without changing the level of plasticity; (2) 

by increasing the level of plasticity when acting on the phenotype: the individuals 

that are positively selected are the most  plastic ones, possessing the most extreme 
phenotype. 

By contrary, genetic assimilation should act to increase canalization (i.e., 

decrease plasticity) in a population subject to a given range of environmental 

conditions, provided that an increase in canalization is adaptive. The assumption 
associated with genetic assimilation is that plasticity itself will evolve. 
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It is possible to have both the Baldwin effect and genetic assimilation 

occurring simultaneously for a specific trait in different lineages or for different 
traits within a lineage. They can equally promote evolutionary diversification in 

nature. Phenotypic plasticity allows expansion into novel environments, whereas 

genetic assimilation allows adaptive genetic divergence among populations. 

 

3. EVOLUTION, LEARNING AND ENCULTURATION (MEME 

TRANSMISSION) 
There are three main explanatory mechanisms of the way a system is 

adapting to its environment: evolution, learning and enculturation (meme 

transmission). 
 

3.1. Evolution 

Evolution is a slow adaptive process that acts incrementally and through 

which the basic characteristics of a species are dynamically adjusted. It is based 
on the Darwinian principle of natural selection (survival of the fittest), operates 

at a population level, rather than on individuals themselves, and is grounded on 

three principles: variation, competition and heritability. In the modern 
evolutionary synthesis, genetics is the biologically adequate theory of heredity. 

Genes provide the mechanism of natural selection and are passed on by survival of 

a species. They thus underpin Darwinism, forming a keystone of evolutionary 
theory. While evolution is ubiquitous and fundamental to all of biology, it also 

plays a crucial role in intelligent systems since it has shaped both very biological 

systems and the computationally intelligent systems that mimic the former. Within 

the latter it is best viewed as a type of optimization process in time and space. The 
environment is the fundamental driver of this optimization process. 

 

3.2. Learning  
Learning is based on the connectionist model of the brain and is concerned 

with the gradual improvement of the adaptation capability to the environment, at 

an individual level, in an attempt of tuning the structure and behavior 
characteristics of the individual. It is local in space and time, since it occurs in a 

single individual, during its lifetime, and allows for more plasticity in how an 

individual can better cope with its environment. 

The evolutionary value of learning consists in accelerating the evolution of 
an adaptive trait. This typically happens in a dynamical environment, where 

phenotypic plasticity (such as the learning capability) is beneficial for evolution 

and can smooth the fitness landscape. The Baldwin effect provides the explanatory 
framework for this case. 

However, learning is not always advantageous. It is often expansive, since 

requires experiments, involving acquisition of data and sensors. Static 

environments typically favor instinctive mechanisms, which are less expensive 
than learned ones. A trait that initially has been carried out by a learning 
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mechanism may eventually become common and robust in the population. This 

gives evolution a long enough time to find an instinctive mechanism for replacing 
the learned one. Prototypical for this case is the Waddington’s theory of genetic 

assimilation (canalization).  

In designing artificial adaptive systems, one can chose to follow the 

principle of Lamarckian evolution and to directly integrate learned behaviors into 
genotype, by building a mapping from phenotype to genotype, if possible. 

 

3.3. Contrasting evolution and learning  
Evolution and learning have different goals. The goal of evolution is to 

maximize fitness. Learning is used, instead, by individuals in an attempt to help 

them achieving their immediate goals, which may not match with the “goals” of 
evolution. 

Evolution has produced a type of trade-off between instinctual traits (taken 

over by the genome) and traits learned via the interaction of the organism with its 

environment. An appropriate amount of learning has evolved to help ensure 
reproductive success. 

Both the evolution and learning appear to search the fitness landscape for a 

better position. The current location and the shape of the fitness landscape dictate 
the right trade-off between evolution, which performs a kind of global search, and 

learning, which performs a kind of local search. 

There are different time scales to which evolution and learning operate. 

Phenotypic plasticity is more advantageous in a dynamic environment, 
where evolution cannot adapt fast enough and learning may be used by individuals 

as a compensatory mechanism. Thus, learning can increase the variability in the 

population, which subsequently can accelerate evolution. It actually smoothes the 
slope of the fitness landscape. This is the specific context in which synergetic 

effects between evolution and learning normally appear. 

In a static environment, instead, evolution accommodates better to the time 
scale dimension and thus can adapt, favoring phenotypic rigidity (instinctual traits 

are not penalized). There are some risks that come with learning, since it strongly 

relies on experience, and is hence more stochastic than the instinct. While the slope 

of the fitness landscape is already smooth, learning may have little advantage over 
instinct. Instincts are brittle and thus more stable. In such specific contexts there 

are no synergetic effects. The seminal work “How Learning Can Guide Evolution” 

by (Hinton and Nowlan, 1987) provided much insight into the interplay between 
evolution and learning. 

 

3.4. Enculturation (meme transmission) 
Culture is an essential part of the human adaptation. Individual learning 

can be complemented by cultural transmission that has more global influences 

among large social groups. Dawkins (1976) coined the term meme for the basic 

unit of cultural transmission, analogous to the gene in biological evolution. Memes 
live in human brains and compete with each other for resources such as time and 
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storage space, under the pressure of limiting factors. Time is perhaps the subject of 

most heavy competition. Some memes are more successful in the meme-pool than 
others. Particular qualities that allows for high survival value among memes are 

longevity, fecundity, and copying-fidelity. Memes propagate themselves in the 

meme pool by spreading from brain to brain via colonization and a replication 

process, based on imitation. A meme colonizes a human brain and tends to mature 
into an idea. Subsequently, that idea may be eventually communicated to another 

person, by means of a communication process that involves transmitting the meme. 

The analogy between memes and genes suggests that memes are better referred to 
as the devices by which we express our ideas and are analogous to genotypes, 

whereas the ideas themselves are analogous to phenotypes. Meme transmission 

gives rise to a form of evolution that is fully compatible with the Darwinian 

evolution. The transmitted meme results from the mutation and recombination with 
other memes in the host brain. 

Since ideas (identified with the phenotypes of memes) have themselves a 

certain degree of plasticity, the Baldwin effect is also a good candidate for 
evolving memes. The ideas that populate the host brain are more or less consistent 

with each other, more or less appealing, and more or less plastic. The fitness 

landscape is defined by the degree to which they fit into the ecology of the brain. 
Plastic ideas have the potential to adapt, but they have to be processed by the host 

brain and thus consume brain time. The ideas derived directly from memes are not 

plastic at all (are just imitations), but benefit from the fact that need not to be 

processed and thus do not consume brain time. 
Ideas that are highly consistent with the cultural environment are devised 

as meme and enter the meme transmission process. 

The generic denomination of Memetic Algorithms, also called the Cultural 
Algorithms, is used to encompass a class of metaheuristics that have been inspired 

by Dawkins' notion of meme. A memetic algorithm is a kind of evolutionary 

algorithm that makes use of local search, wherein evolution and learning are 
combined using the Lamarckian or Baldwinian strategy. It actually combines local 

search heuristics with genetic operators. 
 

3.5. Differences between biological and artificial evolution 
An apparently surprising fact is that in the evolution of biological systems, 

there is no fitness function. Nature is content to produce descendants. Regulation is 

due to environmental pressure (external conditions that tend to influence the 
individuals’ development and behavior) as well as phylogeny, and morphogenesis, 

which are supported by some “rationales” internal to the genomes. 

On the other hand, in artificial evolution, someone is almost obliged to 

define fitness functions, from the moment when she or he is interested in 
measurements in the phenotypic space (the performance, among others). 

While biological evolution uses a fundamental intermediate level for 

morphogenesis (the protein space), artificial evolution manipulates non-living 
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objects or structures, and works in a very short time. In addition, it generally works 

with a fixed genomic structure, very useful for calculations and direct genotype-
phenotype correspondence. 

 

4. METAHEURISTICS AND HYBRIDIZATION STRATEGIES 
 

4.1. Generalities  

Metaheuristics are some form of stochastic computational approach to an 
optimization problem, aiming at finding the global optimum, while avoiding being 

trapped in other local optima. They work in an iterative way as a means to gather 

information, to explore the search space and to cope with problems such as 

combinatorial explosion. Many of them are often inspired by natural systems in 
many fields such as evolutionary biology (e.g., evolutionary and genetic 

algorithms), physical systems (e.g., simulated annealing, gravitational search 

algorithm), ethology (e.g., ant colony algorithm, particle swarm optimization) and 
so on.  

Metaheuristics are organized around the following three concepts: - 

diversification (exploration); - intensification (exploitation); - storage (learning). 

Diversification or exploration is the process that directs the procedure to 
gather new information about the problem to be optimized. The simplest 

diversification strategy is to periodically restart the search process from a randomly 

generated solution or judiciously choosing the set of admissible solutions in a 
region not yet visited. 

On the other hand, intensification or exploitation uses information already 

collected to explore in details the areas considered promising in the search space. 
Its implementation lies, most often, in the temporary widening of the current 

solution neighborhood.  

As for the storage, it is the support of learning, which allows the algorithm 

to only consider the areas where the global optimum is likely to be found, thus 
avoiding local optima that are good solutions, but not the best possible solutions. 

Thus, alternating intensification, diversification and storage, metaheuristics operate 

in a progressive and iterative way. The initial step is often selected randomly and 
the final step is often set by means of a stop criterion. All metaheuristics are based 

on the balance between intensification and diversification of the search. Otherwise, 

there will be too rapid convergence to local optima by lack of diversification, or 
too long exploration by lack of intensification.  

Taking into account the way of manipulating solutions, there are three 

fundamental approaches: local search (trajectory-based), constructive and 

population-based ones.  
The local search approach is based on making small changes iteratively to 

a single solution, called the current solution, and constructing a trajectory in the 

space of solutions, by attempting to move towards optimal solutions. From a 
starting point x0, the search consists of passing stepwise from solution to solution, 

in a neighborhood consisting of all solutions. Often the local search operators stop 



 Designing and Tuning Adaptive Systems through Evolution, Learning and Meme 

Transmission 
__________________________________________________________________ 

13 

DOI: 10.24818/18423264/52.1.18.01 

when a locally optimal solution is found. But accepting this type of solution is not 

always satisfactory. It is so important to get out of these local minima by allowing 
the local search operator to find points for which the new solution chosen will be 

better than the previous ones. This is the principle adopted for the Hill Climbing, 

Simulated Annealing, or Tabu Search algorithms. 

The constructive approach is based on constructing solutions from their 
constituents, by adding the best possible element to a partial solution, iteration by 

iteration. Greedy algorithms belong to this class and have GRASP (Greedy 

Randomized Adaptive Search Procedure) as an important representative (Feo and 
Resende, 1995). Another example is Ant Colony Optimization (ACO) (Dorigo et 

al., 1996) that mimics the foraging behavior of ants.  

The population-based (or perturbation) approach relies on selecting and 

then combining existing solutions, iteratively, into new ones, from a set called 
population.  

 

4.2. Evolutionary algorithms: representation and design 
Evolutionary Algorithms (EAs) are a special class of metaheuristics, 

founded on the principles of artificial evolution. Historically, several families of 

EAs were developed independently. The Evolution Strategies (ESs) was proposed 
by I. Rechenberg starting from 1965, to solve continuous optimization problems. 

Fogel, Owens and Walsh, in the 1960s, conceived Evolutionary Programming (EP) 

as an artificial intelligence method for the design of finite state automata. Genetic 

Algorithms (GAs) were proposed by J. Holland (in 1973-1975) for combinatorial 
optimization and later popularized by D.E. Goldberg (1989). Genetic Programming 

(GP) appeared initially as a subdomain of GAs, and was matured by J. Koza 

(1992). GP is specifically concerned with the automatic construction of programs 
and can be seen as artificial evolution of programs represented as trees. Differential 

Evolution (DE), proposed by Price and Storn (1995), is one of the EAs that have 

experienced great development in recent years. DE is a stochastic meta-heuristic 
for multidimensional function optimization, originally designed for continuous, 

unconstrained problems, but can be extended to handle mixed-variable problems, 

as well as non-linear constraints. It is inspired by GAs and ESs, combined with a 

geometric search technique.  
Formally, EAs are stochastic global optimization algorithms of order 0: no 

property of continuity or differentiability is necessary for the smooth running of the 

method, only the knowledge of the values of the function to be optimized at the 
sampling points is required. 

We seek to optimize a function f with real values, defined on a search 

space S. A specific vocabulary is used: 

- the objective function f is called fitness (performance) function; 
- the points of the search space S are called individuals ; 

- the tuples of individuals are called populations ; 

- we are talking about a generation for the main loop of the algorithm. 
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The evolution time is supposed to be discrete, and we denote by Pt the 

population of fixed size N at the generation t. 
The environment pressure, which is simulated using the fitness function f, 

Darwinian principles of natural selection and uncontrolled variations are 

implemented in the algorithm as follows: 

 initialization of the population P0
 by choosing N individuals in S, 

generally by drawing at random with a uniform probability on S; 

 assessment of individuals from P0 (calculation of the values of f for all 

individuals); 
 the generation t builds the population Pt from the population Pt-1: 

- selection of the best performers of Pt-1 in the sense of f (most 

suitable reproduce); 
- application of genetic operators (with a given probability) to the 

selected parents, which generates new individuals, the children. We 

speak of mutation for unary operators, and of crossover for binary 

(or n-ary) operators. Note that this step is always stochastic; 
- evaluation of children; 

- replacement of the Pt-1 population by a new population created from 

the children and/or old parents of the Pt-1 population by means of 
Darwinian selection (the most adapted survives). 

 evolution stops when the desired level of performance is achieved, or a 

fixed number of generations has passed without improving the best 

performer. 
The main component of the algorithm, which is actually prior to all the 

others, is the representation of the search space. In many cases, the search space is 

totally determined by the problem: it is the space S on which the objective function 
f is defined. But it is always possible to transport one's problem into a skillfully 

chosen space, in which it will be easier to define efficient genetic operators. This 

space is then called genotypic space, and the initial search space S, in which the 
performance of individuals is calculated, is called phenotypic space. Historically, 

the bitstring representation of the search space, S = {0,1}N has been initially used 

by the school of GAs (a string of bits being assimilated to a chromosome). 

Alternatively, S can be represented by real-valued vectors, i.e., as a bounded or 
non-bounded subset of Rn, which is the n-dimensional real vector space. 

The various stages of the algorithm can be divided into two groups: those 

related to artificial Darwinism (selection and replacement), which depend only on 
the values taken by f, and not on the chosen representation (i.e., genotypic space); 

and those intimately related to the nature of this research space. Thus, initialization 

and genetic operators are specific to each genotype, but do not depend on the 
objective function f (this is the Darwinian principle of uncontrolled variations). 

Typically, selection and crossover operations are exploitation steps, while 

initialization and mutation are exploration steps (although certain EA variants 

deviate from this general pattern). A trade-off between exploration and exploitation 



 Designing and Tuning Adaptive Systems through Evolution, Learning and Meme 

Transmission 
__________________________________________________________________ 

15 

DOI: 10.24818/18423264/52.1.18.01 

can thus be obtained by playing on the various parameters of the algorithm 

(probabilities of application of the operators, selection pressure, etc.). 
The essential difference between the selection step and the replacement 

step is that the same individual can be selected several times during the selection 

step (which corresponds to having several children), while during the replacement 

stage, each individual is selected once (and he or she survives) or not at all (and he 
or she disappears forever). Furthermore, the replacement procedure may involve 

either the children alone or the previous population as a whole. 

There are two categories of selection or replacement procedures: 
deterministic and stochastic. 

In deterministic selection, the individuals are first evaluated with the 

fitness function. The less successful individuals are totally eliminated from the 

population, and the best individual is always selected. It is said that this selection is 
elitist. Deterministic tournament selection uses only comparisons between 

individuals and does not even require sorting of the population. It has a parameter 

of arity T, the size of the tournament. To select an individual one draws T evenly in 
the population, and selects the best of these T individuals. 

In stochastic selection we resort to a stochastic procedure, which gives a 

chance to the less efficient individuals. It also may happen that the best individual 
is not selected, and that none of the children achieves a performance as good as 

that of the best parent. Roulette wheel selection consists of giving each individual a 

probability of being selected proportional to his performance. Stochastic 

tournament selection is probably the best current selection mode to finely adjust 
the selection pressure, and the fastest also. It consists in giving a real parameter t 

between 0.5 and 1, in choosing uniformly 2 individuals (with or without 

replacement) and in retaining only the best with probability t. 
An evolution engine is a union of a selection procedure and a replacement 

procedure. 

The components of the algorithm that depend intimately on the chosen 
representation are, on the one hand, the initial population, obtained by sampling, as 

uniformly as possible, the search space S, and on the other hand the genetic 

operators, which create new individuals from the selected parents. We distinguish 

crossover operators (binary, or more generally n-ary) and mutation operators, 
unary. The crossover operator exchanges genetic material between parents. The 

mutation operator allows visiting all the search space. It should be quasi-ergodic, in 

the sense that any point of the search space can be reached in a finite number of 
mutations.  The confrontation of early artificial evolution theories with empirical 

results has given rise to debates about the representation and the respective 

importance of the crossover and mutation operators. In GAs, crossover is the main 

search operator ensuring recombination. On the contrary, ESs and EP mainly use 
mutation. The first versions of ESs and EP did not include any crossover. In the 

same way that the GA look at the mutation as a repair operator (re-injection of 

elementary bricks lost due to sampling errors in the population), the ES consider 
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the crossover as a repair operator. It serves to extract the similarities of the good 

individuals of the population to repair the excess of noise introduced by the 
mutations, which increases the speed of convergence. 

Facilitating the adjustment of parameters is one of the stakes of current 

theoretical research on EAs. Recent work on the convergence of these algorithms 

provided a rich theoretical framework, not only reduced to parameter adjustment 
techniques, but also a more in-depth understanding of when and why an EA is 

effective. The design of self-adaptive algorithms, where the parameter adjustment 

is automatic, brings us closer to the perspective of a more flexible and autonomous 
design of our optimizers: to let the evolution take care of itself.  

 

4.3. Hybridization strategies 
Hybridization consists of combining the characteristics of two different 

methods to get the advantages of both methods.  

According to the taxonomy proposed by Talby (2002), hybridization of 

metaheuristics with themselves involves two main classifications: a hierarchical 
classification and a flat classification.  

The hierarchical classification of metaheuristics is characterized by the 

level and method of hybridization. The hybridization may be low-level, or high-
level. In the low-level hybridization, a metaheuristic replaces one operator of 

another method that encompasses. By contrary, in the high-level hybridization, 

each metaheuristic preserves its integrity during hybridization. Each level of 

hybridization generates two types of cooperation, namely, the relay mode and the 
co-evolutionary mode. In the relay mode, the methods are performed sequentially, 

that is to say the output of the first method is the input of the next method. When 

the different methods work in parallel to explore the search space, this mode is 
called co-evolutionary. The combination of modes and levels gives four classes of 

hybridizations: low-level relay hybridization, low-level co-evolutionary 

hybridization, high-level relay hybridization and high-level co-evolutionary 
hybridization.  

The low-level relay hybridization encompasses the class of single 

solution metaheuristics, in which another method is incorporated to form a new 

algorithm. 
The low-level co-evolutionary (teamwork) hybridization consists of 

incorporating one or more single solution metaheuristics into a metaheuristic with 

a population of solutions. The advantage of this type of hybridization is to offset 
the operating power of local search and the exploration power of a global search. 

The high-level relay hybridization occurs when metaheuristics are used 

sequentially that is to say the final solution(s) of the first metaheuristic is/are the 
initial solution(s) of the next metaheuristic. In this procedure, all methods remain 

intact.  

In the case of high-level co-evolutionary (teamwork) hybridization, the 

employed metaheuristics work in parallel, exchanging information between them 
to find the optimal solution of the problem. 
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The flat classification of metaheuristics is characterized by the type of 

hybridization methods, their scope and the nature of their purposes. Depending on 
the type of hybridization, there are homogeneous hybrid methods, where the 

algorithms are based on the same metaheuristic, and heterogeneous hybridized 

methods, where the metaheuristics are different. 

The global hybridization occurs when all hybridized methods are applied 
to the entire search space. By contrast, the partial hybridization decomposes a 

problem into sub-problems where each one has its own search space. 

 

4.4. There is “No-Free-Lunch”  

 

Theoretical and empirical results came to support the idea that looking for 

a metaheuristics that is claimed to be generically the winner in competition with all 
the others is unrealistic. In their famous theorem of the “No-Free-Lunch” (NFL), 

Wolpert and McReady (1995) showed that there is no optimizer that outperforms 

its competitors on average, on all optimization problems. What an optimization 
algorithm has gained on a problem (compared to all other algorithms) is lost on 

another problem. However, we must be careful not to naively interpret the NFL by 

concluding that it is useless to improve the optimization methods since they will 
never do better than, for example, a random search. Actually, this theorem states 

that optimizers perform differently on different classes of functions. To be 

relevant, optimization research must link the algorithm to the problem. 

 

5. MEMETIC ALGORITHMS 
It is now well established that hybridization of evolutionary algorithms 

(EAs) with other techniques can greatly improve the efficiency of search.  EAs that 

have been hybridized with local search techniques (LS) are often called Memetic 

Algorithms (MAs). MAs were introduced by Moscato (1989, 1999) and further 

developed by Merz (2000). They were also inspired by the concept of a meme 
coined by Richard Dawkins (1976). A meme is taken to represent a learning or 

development strategy. Thus, in the case of MAs, memes can be thought of as 

representing alternative improvement strategies that could be applied to solutions, 
where these strategies may be imitated, improved, modified, etc. 

In Talbi’s hierarchical taxonomy of metaheuristics, MAs could be placed 

within the class of low-level co-evolutionary (teamwork) hybrids. In other words, 
an MA is an EA that includes one or more local search phases within its 

evolutionary cycle. The rationale behind this hybridization is to compensating for 

the deficiency of EAs in local exploitation and the inadequacy of LSs in global 

exploration. 
MAs actually combine a Darwinian evolutionary approach to optimization 

with a Lamarckian or Baldwinian adaptation (learning) approach, by embedding a 

LS into a GA. For example, if we re-inject the improved individuals into the 
population, it is Lamarckism. Baldwinism, meanwhile, is implemented in an AE by 
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improving the individual through a local search, then evaluating its fitness after 

modification, but leaving its genome intact. The Lamarckian evolution allows a 
faster convergence than the Darwinian evolution, but the risk of being blocked in a 

local optimum is higher. In Baldwinian evolution, an individual who can 

potentially lead to a good solution is more likely to be chosen, and this approach 

avoids a precipitous convergence towards a local optimum (the evaluation of 
individuals after a local search results in smoothing the fitness function, which 

makes it easier to find good solutions). Thus, a memetic model of adaptation 

exhibits the plasticity of individuals that a strictly genetic model fails to capture. 
A common design for MAs is to apply LS to members of the EA 

population after recombination and mutation, in order to intensify the exploitation 

of the best search regions gathered during the global sampling done by the EA. The 
choice of the local optimization heuristic depends on the problem at hand.  

  

6. COMPARING GAs AND MAs WHEN EVOLVING TYPE-2 

FUZZY LOGIC SYSTEMS 
In Georgescu (2017) we introduced a new approach to evolving an Interval 

Type-2 Fuzzy Logic System (IT2FLS) for bankruptcy prediction, by using GAs. In 
this section, we extend our work to using MAs and contrast these two alternative 

approaches in terms of design differences and predictive performance.  

 
6.1. Brief presentation of type-2 fuzzy logic systems  

The advantage of an IT2FLS is that of representing and capturing 

uncertainty with more degrees of freedom, which allows it, presumably, to 
outperform its type-1 counterpart. The GA-based approach has been specifically 

designed to solve a mixed integer optimization problem that is consistent with our 

strategy of training an IT2FLS from scratch. This led us to use genetic operators 
such as Tournament selection, Extended Laplace crossover and Power mutation. 

See Georgescu (2017), for more details. 

Fig. 1 shows the primary and secondary membership functions of a general 

type-2 fuzzy set, where UMF  and LMF are the Upper Membership Function and 
Lower Membership Function, respectively, and the hashed region is the so called 

footprint of uncertainty (FOU). 

An IT2FLS is similar to a type-1 FLS, containing a fuzzifier, rule base, 
fuzzy inference engine, and output processing. Additionally, a type-2 FLS has a 

type-reducer in the output processing, which has the ability to generate a type-1 

fuzzy set from a type-2 fuzzy set. The defuzzifier then can defuzzify this type-1 
fuzzy set to a crisp number. The Karnik-Mendel (KM) algorithms and their 

extended counterparts (EKM) are the most known algorithms for the centroid type-

reduction and defuzzification stage. Alternative approaches, based on faster 

approximations have been also proposed, such as the Wu-Tan and the Nie-Tan 
methods.  
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Figure 1. Primary and secondary membership functions of a general type-2 

fuzzy set 

 

6.2. Representation and design with GAs  

 

The rationales behind using GA as a metaheuristic for optimization are that 
it benefit from specialized genetic operators, such as Tournament selection, 

Extended Laplace crossover and Power mutation, which were specially designed 

to handle optimization problems with integer variables. This is crucial when 

evolving an IT2FLS from scratch, meaning that the shapes and positions of the 
IT2MFs, along with the rules of an IT2FLS, are simultaneously evolved. 

Four types of Interval Type-2 Membership Functions (IT2MFs) are used in 

our implementation: IT2zmf, IT2gaussmf, IT2trimf and IT2smf. We encode the 

type of IT2MFs by an integer, }4,3,2,1{tmf . Let Xxx ba ],[  be the interval 

spanned by an IT2FS. If we denote by m    2/ba xx  ,   2/ab xxs   and e , 

respectively, the middle point, the spread and the extent of uncertainty, each of the 
four IT2MFs mentioned above can be uniquely encoded by means of four 

parameters:  esmtmf ,,, . See Fig. 2. 
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Figure 2. IT2MFs, with 0ax , 1bx  and 2.0e , or    5.02/  ba xxm , 

  5.02/  ab xxs . 

 
In order to evolve an IT2FLS by means of a GA, we need to encode each 

candidate solution of the optimization problem into a chromosome. Let us assume 

that the IT2FLS consists of NI  input variables, one output variable and NR  rules. 

We consider that the universes of discourse of all input and output variables are 



Vasile Georgescu 

20 

DOI: 10.24818/18423264/52.1.18.01 

covered by fuzzy partitions with the same number of IT2FSs, say NF . The 

meaning of each gene depends upon its position in the chromosome. The first 

4)1(  NFNI  genes will encode the fuzzy space defined by all the IT2FSs that 

generate the fuzzy partitions of the input and output variables. Each fuzzy rule in 

the rule base is also encoded by )1( NI  genes, with values represented by an 

integer in the following set: },1,,1,0,1,,1,{ NFNFNFNF   . An integer in 

the first NI  positions will indicate an IT2FS selected for the corresponding input 

variable, while an integer in the last position, 1NI , will indicate an IT2FS 

selected for the output variable. The integer 0  points out the absence of a certain 

variable in that rule and a negative integer shows that the negation of an IT2FS is 

to be selected for the corresponding variable in the rule. A rule without a nonzero 

antecedent and consequent part is not a feasible rule and will not be included in the 

rule base.  

Finally, each chromosome consists of NRNINFNI  )1(4)1(  genes 

and is part of a population of chromosomes represented in the hyperspace of 

potential solutions. First, an initial chromosome population is randomly generated. 
Then, the population will undergo genetic operations such as selection, crossover, 

and mutation to evolve and optimize chromosomes. Every chromosome is assigned 

a fitness value, and then a selection operator is applied to choose relatively ‘fit’ 
chromosomes to be part of the reproduction process. The crossover and mutation 

operators are closely related to the encoding scheme of MFs and rules. The fitness 

function uses the error rate between desired outputs and estimated outputs. 

Therefore, the fitness value is evaluated based on simulating the IT2FLS on a given 
learning dataset. See Georgescu (2017) for more details. 

 

6.3. Extension from GA to MA, by embedding the Simulated Annealing 

Algorithm into GA 

As an alternative to GA we use now a MA, where the local search 

improvement is performed by embedding a Simulated Annealing Algorithm into 
GA. 

The Simulated Annealing (SA) algorithm was inspired by the process of 

annealing in metallurgy, where a material is heated and slowly cooled under 

controlled conditions, in order to reduce the possible defects in the material by 
increasing the size of the crystals in its structure. This results in an improvement of 

its strength and durability. The energy and mobility of atoms are increased by 

heating, while a slow cooling allows a new low-energy configuration to be found 
and exploited. 

SA is an adaptation of the Metropolis-Hastings Monte Carlo algorithm. 

The use of SA for solving combinatorial optimization problems is much more 

recent and dates back to the 1980s (Kirkpatrick, 1983; Cerny, 1985). 
The idea is to perform a movement according to a probability distribution 

that depends on the quality of the different neighbors: the best neighbors have a 

higher probability; the worst ones have a lower probability. A parameter, called the 
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temperature and denoted by T, is used. For higher T, all neighbors have about the 

same probability of being accepted. For lower T, a movement that degrades the 
cost function has a low probability of being chosen. For T = 0, no degradation of 

the cost function is accepted. The temperature varies during the search: T is high at 

the beginning, then decreases progressively towards 0. 

The pseudo-code of SA is given below: 
 

Let s = s0 

For k = 0 :  kmax (exclusive): 
T ← temperature(k ∕ kmax) 

Pick a random neighbour, s' ← neighbour(s) 

If P(E(s), E(s'), T) ≥ rand (0, 1): 

s ← s' 

Output: the final state s. 
 

Notations: s is the current state; s' is the new (candidate) state; E(s) is the 

energy of state s; E(s') is the energy of state s'; kmax is the maximum number of 

steps; P(E(s), E(s s'), T) ≥ rand (0, 1). 
The call rand (0, 1) returns a random number uniformly distributed in 

[0,1]. 

Two similar IT2FLS architectures have evolved: one using GA (called GA-
IT2) and another using MA (MA-IT2FLS). Their performances were tested and 

compared by considering a problem of bankruptcy prediction. A sample of 130 

Romanian companies has been drawn from those listed on Bucharest Stock 

Exchange (BSE). The binary variable to be predicted is entering insolvency or not. 
As predictors, a selection of the most relevant 8 financial ratios has been used. 

A particular configuration of an IT2FLS evolved using our available 

training dataset is shown in Fig. 3. It consists of 8 rules, 8 antecedent variables and 
one consequent variable. Our experimental setup was to use the same training 

dataset in order to evolve 100 configurations for both the GA-IT2FLS (evolved 

with GA) and MA-IT2FLS (evolved with MA) and to compare their in-sample and 
out-of-sample average classification error rates.  

The results are presented in Table 1. We conclude that the percentage of 

misclassified companies, which results, in average, using MA-IT2FLS is 

significantly lesser than that using GA-IT2FLS for both the in-sample and out-of-
sample average classification error rates. This actually means that MAs 

outperforms GAs when used to evolve IT2FLSs. 

Table 1. In-sample and out-of-sample average classification error rates 

 GA-IT2FLS MA-IT2FLS 

In-sample average classification error rate 6.14 % 5.83% 

Out-of-sample average classification error rate 7.35 % 6.67% 
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Figure 3. Rule viewer of the IT2FLS 

 

 

7. CONCLUSIONS 
 

The design of so-called “intelligent systems” through models inspired by 

biological intelligence has been highly successful in the last decades. 
Computational intelligence is a branch of AI that is concerned with the study of 

adaptive mechanisms allowing for intelligent behavior in complex and changing 

environments. There are different visions underlying the notion of intelligence in 

humans, animals and machines. However, all computational paradigms are deeply 
rooted in biological paradigms, from basic adaptive mechanisms in simple 

organisms, passing through evolutionary and learning processes that undergo all 

forms of live, to cognition and human thinking processes. 
This paper has been focused on describing the mechanisms of evolution, 

learning and meme transmission and the ways of applying them to designing and 

tuning intelligent adaptive systems. Nature-inspired metaheuristics are very 
appealing and versatile techniques to help achieving such goals. They proved to be 

very effective when dealing with difficult optimization problems, without having 

to modify the basic structure of the algorithm used and became more and more 

popular thanks to their ease of use in different areas. It should be noted that good 
performance often requires adequate formalization of the problem and intelligent 

adaptation of a metaheuristic. Hybridization can be used to improve the 

effectiveness of an optimization solver by harnessing the power of two or more 
metaheuristics and combining them into a single one. This may give us new ways 

of controlling the exploration and exploitation capabilities of the newly generated 

hybrid. 



 Designing and Tuning Adaptive Systems through Evolution, Learning and Meme 

Transmission 
__________________________________________________________________ 

23 

DOI: 10.24818/18423264/52.1.18.01 

We also provided experimental evidence that metaheuristics can serve for 

the purpose of evolving either type-1 or type-2 fuzzy logic systems to perform 
tasks such as classification or function approximation. Although type-2 fuzzy logic 

systems are several times more computationally time consuming due to the 

inclusion of a type-reducer in the output processing, it benefit instead from the 

advantage of representing and capturing uncertainty with more degrees of freedom. 

We used two approaches to evolving IT2FLSs  one based on MAs and another 

based on GAs  and benchmarked the former against the latter. The results showed 

that MA-IT2FLS outperformed GA-IT2FLS for both the in-sample and out-of-
sample average classification error rates. 
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